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Abstract—Smoke detection plays an important role in indus-
trial safety warning systems and fire prevention. Due to the
complicated changes in the shape, texture and colour of smoke,
identifying the smoke from a given image still remains a substan-
tial challenge, and this has accordingly aroused a considerable
amount of research attention recently. To address the problem,
we devise a new deep dual-channel neural network (DCNN)
for smoke detection. In contrast to popular deep convolutional
networks, e.g., Alex-Net, VGG-Net, Res-Net, and Dense-Net, and
the DNCNN that is specifically devoted to detecting smoke,
our proposed end-to-end network is mainly composed of dual
channels of deep subnetworks. In the first subnetwork, we se-
quentially connect multiple convolutional layers and max-pooling
layers. Then, we selectively append the batch normalization
layer to each convolutional layer for over-fitting reduction and
training acceleration. The first subnetwork is shown to be good
at extracting the detail information of smoke, such as texture. In
the second subnetwork, in addition to the convolutional, batch
normalization and max-pooling layers, we further introduce two
important components. One is the skip connection for avoiding
the vanishing gradient and improving the feature propagation.
The other is the global average pooling for reducing the number
of parameters and mitigating the over-fitting issue. The second
subnetwork can capture the base information of smoke, such
as contours. We finally deploy a concatenation operation to
combine the aforementioned two deep subnetworks to comple-
ment each other. Based on the augmented data obtained by
rotating the training images, our proposed DCNN can promptly
and stably converge to the perfect performance. Experimental
results conducted on the publicly available smoke detection
database verify that the proposed DCNN has attained a very
high detection rate that exceeds 99.5% on average, superior to
state-of-the-art relevant competitors. Furthermore, our DCNN
only employs approximately one-third of the parameters needed
by the comparatively tested deep neural networks. The source
code of DCNN will be released at https://kegu.netlify.com/.
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I. INTRODUCTION

IT is an urgent task to promptly and effectively detect the
smoke for industrial automation and fire safety warning

systems, such as torch black smoke detection in petrochem-
ical fields and forest fire warnings. Existing approaches for
torch black smoke detection and pyrotechnic detection mainly
depend on manual observation or sensors. Because of limited
human resources, popular manual observation-based methods
cannot be used to monitor smoke rapidly and validly in
the long term, particularly given intermittent interruptions or
distractions. On the other hand, smoke sensors that are based
on smoke particle sampling or relative humidity sampling are
very likely to cause a severe time delay; moreover, they can-
not simultaneously and completely cover the detection areas
when applied to detecting smoke because of the influences
of environmental variations. Overall, existing smoke detection
methods meet with difficulties in satisfying the requirements
of today’s industrial processes and safety warnings.

During the last several years, image-based smoke detection
methods have been broadly explored to solve such problems.
In [1], motivated by an observation that smoke affects the
high-frequency information of an image’s background area,
Toreyin et al. proposed a method that applied the spatial
wavelet transform to measure the high-frequency energy loss
of the scene for smoke detection. In [2], by introducing wavelet
decompositions and a support vector machine (SVM), Gubbi
et al. developed a smoke characterization-based technique to
identify smoke from a video sequence. In [3], Yuan devised
a fast accumulative motion orientation model based on an
integral image for video smoke detection. In [4], Yuan devised
a video-based smoke detection approach using histograms of
the local binary pattern (LBP) and local binary pattern variance
(LBPV). In [5], Yuan put forward a smoke detection method
by learning shape invariant features on multi-scale partitions
with AdaBoost. Note that this is the first time that the multi-
scale strategy was used to amend the performance of smoke
detection by a sizable margin. In [6], Yuan et al. proposed
a classification algorithm for smoke images based on a high-
order local ternary pattern (LTP) with local preservation pro-
jection, and this algorithm has led to a noticeable performance
gain compared with the existing relevant methods. In [7],
Yuan et al. incorporated the LBP, kernel principal component
analysis (KPCA) and Gaussian process regression for detect-
ing smoke. For the readers’ convenience, we summarize the
image-based smoke detection algorithms illustrated above in
Table I. It is not difficult to determine that most of the existing
smoke detection technologies are only based on the analysis
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TABLE I: Summary of image-based smoke detection methods.

Reference Description

[1] Spatial wavelet transform + High-frequency energy loss
[4] Multi-scale + LBP + LBPV + Histograms of pyramids
[6] High-order LTP + Local preservation projection
[7] LBP + KPCA + Gaussian process regression
[22] CNN + Batch normalization + Full connection

and synthesis of textural information.
To date, the majority of existing smoke detection models

have been developed by using hand-crafted features for iden-
tifying smoke. Nonetheless, such studies might encounter a
bottleneck because the manually extracted image features are
still of insufficient ability to characterize the complicated vari-
ations in the smoke images [1]-[7]. In contrast, deep learning
is very possibly a better solution for smoke detection since
recent years have seen an unmatched performance attained by
deep learning, particularly in pattern recognition applications
such as image recognition and image classification [8]-[9].
Multiple prevailing deep convolutional networks participated
in the well-known ILSVRC (ImageNet Large Scale Visual
Recognition Challenge [10]) competition classification project
and have made significant breakthroughs. For example, some
typical networks, such as Alex-Net [11], ZF-Net [12], VGG-
Net [13], GoogLe-Net [14], Xception [15], and Res-Net [16],
illustrate that neural networks have become increasingly deep-
er, from a few layers to more than one hundred layers during
the past several years. Moreover, deep learning has also been
successfully applied to numerous multimedia applications re-
cently [17]-[21].

Despite the great achievements obtained by deep learning,
very limited effort has been devoted to the smoke detection
task. To the best of our knowledge, only one deep learning-
based model exists for detecting smoke. More specifically, in
[22], Yin et al. developed a deep normalized convolutional
neural network (DNCNN) for smoke detection from images.
The DNCNN imposes two main improvements on a sequential
convolutional neural network. One is that the DNCNN embeds
the batch normalization (BN) [23] into the convolutional layer
for alleviating the gradient dispersion and over-fitting problems
when training the network. The other is that the DNCNN
adopts the data augmentation technology to settle the problem
of positive and negative sample imbalance and insufficiency
that occurs in the training samples. These two improvements
have promoted the performance of DNCNN to a high level
beyond 97%1. However, such detection accuracy is unable to
meet our requirements because the poisonous smoke emitted
into the air due to the imperfect smoke detection technology
is harmful to safeguarding life and the environment; in other
words, achieving a perfect detection performance of 100% is
our unique and never-ending pursuit, similar to the goal for
autonomous vehicles [24].

To further enhance the performance and robustness of
smoke detection, in this paper we put forward a novel deep
dual-channel neural network, dubbed DCNN. For a given

1We also include DNCNN as an image-based smoke detector in Table I.

TABLE II: Important symbols and implications.

image, we first divide the input image into patches, and then
separately identify each patch based on the proposed DCNN.
By such processes, we can convert the task of detecting smoke
into a two-category classification problem, i.e., smoke patch
and smoke-free version. The proposed end-to-end DCNN
is mainly established by employing dual channels of deep
subnetworks. Multiple convolutional layers and max-pooling
layers are sequentially connected to generate the first channel
of the subnetwork. To alleviate the over-fitting problem and
accelerate the training process, we introduce the BN opera-
tions. We selectively append the BN layer to each of the last
four convolutional layers since it was found that the BN layer
is very likely to restrict the freedom of extracted features [25]-
[26]. The first channel of the subnetwork is shown to be good
at extracting the detail information of smoke.

Next, the second channel of the subnetwork is constructed
by incorporating two new significant components with the
convolutional, BN, and max-pooling layers. One component
is the skip connection, which contributes to preventing the
gradient vanishing and enhancing the feature propagation.
The other component is the global average pooling, which
is beneficial in decreasing the number of parameters and
mitigating the problem of over-fitting. It was found that the
second channel of the subnetwork is capable of capturing
the base information of smoke. Eventually, we construct the
DCNN by introducing a concatenation operation to fuse the
features extracted using the aforementioned two deep sub-
networks. By complementing each other, the concatenation
operation can condense the extracted features and enable their
stronger representation ability. Our DCNN is learned based on
the augmented training data, which are generated by rotating
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Fig. 1: The basic architecture of SBNN, including six convolutional layers, three max-pooling layers, four normalization layers, and three
fully-connected layers. The implications of symbols can be found in Table II. ‘Conv’, ‘MaxP’, ‘NaC’, and ‘FC’ stand for convolution,
max-pooling, normalization and convolution, and full connection operations, respectively.

Fig. 2: The basic architecture of SCNN, including eleven convolutional layers, three max-pooling layers, seven normalization layers, and
one global average pooling layer. The implications of symbols can be found in Table II. ‘Conv’, ‘MaxP’, ‘NaC’, and ‘GAP’ stand for
convolution, max-pooling, normalization and convolution, and global average pooling operations, respectively.

training image patches. Experiments demonstrate that our
proposed DCNN leads to noticeable improvement by boosting
the performance of smoke detection and lowering the number
of model parameters compared with recently proposed deep
networks including Alex-Net [11], ZF-Net [12], VGG-Net
[13], GoogLe-Net [14], Xception [15], Res-Net [16], Dense-
Net [27], and DNCNN [22].

We highlight the main novelty and contribution of this
work compared with existing image-based smoke detection
methods as follows. First, from the viewpoint of the design
principle, this paper is the first work that integrates the low-
level local textural characteristics and the high-level global
contour information for detecting smoke from images. Further,
by using image decomposition, we straightforwardly illustrate
the necessity of fusing the aforesaid two components in smoke
detection. Second, from the aspect of network structure, this
paper is the first work that designs a dual-channel deep
neural network for effective and efficient smoke detection.
Specifically, to improve the detection effectiveness, we insert
the skip connection into a sequential convolutional network for
capturing contour information and introduce the feature fusion
layer for comprehensively synthesizing textural characteristics
and contour information. We replace the fully-connected layers
with a simple global average pooling to largely reduce the
number of model parameters, and thus enhance the efficiency
during training and testing. Last, from the perspective of
detection performance, our proposed DCNN attains very high
accuracy beyond 99.5% on average, resulting in a relative
performance gain of approximately 1% compared with the
second-rank model.

The structure of this paper is outlined as follows. Section
II illustrates the details concerning the network architecture,
parameter settings, etc. In Section III, the superiority of our

proposed DCNN is validated by comparison with state-of-
the-art deep learning models and recently proposed smoke
detection methods. Furthermore, we specifically discuss how
the two deep subnetworks complement each other. Section IV
summarizes the whole paper.

II. PROPOSED DEEP NEURAL NETWORK

Recent years have seen a growing number of multimedia
technologies that were applied for resolving environmental
problems, e.g. smoke detection [22], PM2.5 monitoring [28]-
[29], and air quality forecast [30]-[32]. The proposed DCNN,
particularly devised for detecting smoke, will be described in
detail. As illustrated earlier, our DCNN is composed of dual
channels of deep subnetworks. We arrange the whole Section
II by first introducing the two deep subnetworks, namely, the
selective-based batch normalization network (SBNN) and skip
connection-based neural network (SCNN). Then, we present
how to reasonably combine the above subnetworks to build
the DCNN. Last, we illustrate the details of network training.
For the convenience of readers, we present important symbols
and the associated implications in Table II.

A. SBNN’s Architecture

Built on the convolutional neural network and inspired by
the recently proposed DNCNN, we establish the SBNN, as
given in Fig. 1. First, we sequentially connect six convolutional
layers and three max-pooling layers for feature extraction.
Convolution is a commonly used operation for capturing
local information to generate a tensor of outputs. The r-th
convolutional layer consists of nr feature maps, denoted as
Fr

p(p = 1, 2, · · · , nr). Each feature map in the (r − 1)-th
convolutional layer, Fr−1

q (q = 1, 2, · · ·, nr−1), is convolved
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Fig. 3: The basic architecture of DCNN, including the dual channels of deep subnetworks for feature extraction, a concatenation operation
for feature fusion, as well as a convolution layer and a global pooling layer for classification. ‘GAP’ stands for the global average pooling
operation. For the sake of clarity, we remove the operation symbols from the original subnetworks and only keep the feature blocks. The
top channel is the SBNN0 and the bottom channel is the SCNN0.

with the filter Wr
qp and added to the bias br

p, followed by a
non-linear activation function Λ(·):

Fr
p = Λ

nr−1∑
q=1

Fr−1
q ?Wr

qp + br
p

 , p = 1, 2, · · ·, nr (1)

where “?” indicates the convolution operation. The activation
function leverages the rectified linear unit (ReLu) function
since it is more consistent with the characteristics of biological
neurons [33]. The max-pooling targets to learn biologically
plausible features by activating the local maximum response.
The main merits of max-pooing are the invariance of transla-
tion, rotation and scale, as well as the reduction in the number
of network parameters. In our implementation, we select the
maximum activation value over a small pooling region.

Then, we selectively append the BN layer to each of the
last four convolutional layers. When training deep convolu-
tional neural networks, the most commonly used optimization
method is the mini-batch stochastic gradient descent (SGD).
However, the internal covariate shift, namely, the variations of
internal input distributions during training, usually reduces the
training efficiency seriously. The BN was proposed to resolve
such limitations of convolutional layers [23]. By transforming
internal inputs with a scale and shift step prior to non-linear
activation, the BN can validly speed up the network training
and prevent parameter over-fitting. More specifically, based
on the mini-batch mean and variance, each feature fj is
normalized as follows:

f̂j =
fj − µj√
σ2
j + ε

(2)

where µj = 1
n

∑n
i=1 fj,i and σ2

j = 1
n

∑n
i=1 (fj,i − µj)

2 are
respectively the mini-batch mean and variance, with n being
the size of a mini-batch and fj,i being the j-th feature of the i-
th sample in the mini-batch. ε is a fixed small positive number

used for promoting numerical stability. However, normalizing
the input features might decrease their representation capabil-
ity. Two free parameters α and β are thus introduced to settle
such problems by transforming normalized features via a scale
and shift step in the BN:

B(fj) = αf̂j + β. (3)

The reason why we do not append the BN layers to the
first two convolutional layers originated from insights in a
recent study, which implied that the BN makes the extracted
features freely constrained [25]. Therefore, we remove the BN
in the first and second convolutional layers to facilitate better
protection of the smoke characteristics of the image patch.

We extract the features from a given image patch based on
the above-mentioned operations. Then, we append three fully-
connected layers at the end of the last max-pooling layer L9.
Sufficient experiments indicated that the full connection op-
eration can easily cause over-fitting since the fully-connected
layers often contain a substantial number of learnable param-
eters. A typical solution to overcome such a problem is to
introduce the dropout technique [34]. In our implementation,
as shown in Fig. 1, the first fully-connected layer L10 receives
all feature maps of F9 as the input neurons to yield the feature
maps of F10:

F10 = W10 ? F9 + b10. (4)

Likewise, we can derive the output of the second and third
fully-connected layers, namely, the feature maps F11 and F12.
The output layer L12 consisting of two neurons produces two
classes of probabilities, x̂ = [x̂1, x̂2]T . The output probability
of the u-th neuron for the u-th class is calculated using the
softmax function:

x̂u =
exp(F12

u )∑2
i=1 exp(F12

i )
, u = 1, 2. (5)

Furthermore, it is noteworthy that, compared with the DNC-
NN, our proposed SBNN has two dominant improvements:
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1) a more compact structure, and 2) a selective-based batch
normalization.

B. SCNN’s Architecture

On the basis of SBNN, the SCNN in the second channel fur-
ther introduces the skip connection and global average pooling,
as shown in Fig. 2. First, we connect eleven convolutional lay-
ers, seven BN layers, and two max-pooling layers to construct
a sequential network for extracting features. Note that, akin to
the SBNN, the BN layer is not appended to the former two
convolutional layers for better feature protection. The kernel
size of the first convolution layer M1 is assigned as nine for
extracting richer image features without seriously increasing
network parameters and that of the second convolution layer
M2 is set as one for the purpose of merging the features
extracted from the front layer without changing the features’
structure. Further, the BN layer is also not appended to the
sixth and eleventh convolutional layers (i.e., M6 and M13)
since these two layers are used to lower the dimensionality by
properly fusing the feature maps. Apart from the operations
mentioned above, the SCNN hops and connects the first feature
map G1 to the fifth feature map G5 (before the max-pooling)
through the skip connection. These two feature maps are
merged together with a concatenation operation followed by a
convolutional layer with its kernel size of one:

G6 = max(0,V6 ? [G1,G5] + b̂6) (6)

where the operation [G1,G5] concatenates the two feature
maps G1 and G5 together. V6 and b̂6 represent the weights
and biases of the sixth layer for convolution. It is noted that the
merged feature map contain the initial simple features and the
complicated features after multiple convolution layers. Next,
by the following convolution, BN and max-pooling operations,
the redundant features in the above merged feature map can
be removed.

Compared with the SBNN, the second change in SCNN is
the global average pooling, which replaces the three cumber-
some fully-connected layers. Specifically, instead of the fully-
connected layer, this paper adopts one convolution layer M13

(with kernel size of one and kernel number of two) followed
by a simple global average pooling layer M14 to yield a pair
of average numbers. The global average pooling is computed
by the following:

G14
t =

1

Wt ·Ht

Wt·Ht∑
s=1

gs,t (7)

where gs,t stands for the s-th pixel value in the t-th feature
map G13

t ; Wt and Ht are the width and height of G13
t . Based

on the softmax function, we can derive the output probability
of the u-th neuron for the u-th class to be as follows:

ŷu =
exp(G14

u )∑2
i=1 exp(G14

i )
, u = 1, 2. (8)

Such a replacement can secure two obvious advantages: one
is to largely reduce model parameters and thereby mitigate the
over-fitting problem; the other is that the SCNN is available
to accommodate various sizes of the input image patch.

(a) (b) (c) (d)

Fig. 4: Examples of data augmentation: (a) Pristine image patches
in the dataset for training the network; (b) image patches rotated by
90 degrees; (c) image patches rotated by 180 degrees; and (d) image
patches rotated by 270 degrees.

C. DCNN’s Architecture

Through substantial experiments, it was found that both the
proposed SBNN and SCNN have attained high performance.
The SBNN is good at extracting the detail information of
smoke, while the SCNN can nicely capture base information
of smoke2. It is natural to integrate the advantages of SBNN
and SCNN to construct the dual-channel DCNN for smoke
detection. More concretely, we extract a part of SBNN by
eliminating all three fully-connected layers. The extracted part
of SBNN, dubbed SBNN0, is leveraged for feature extraction.
Similarly, we extract SCNN0 by removing the global average
pooling layer from the SCNN. Note that the size of SBNN0’s
output is not matched with that of SCNN0’s output. Hence,
we further modify SBNN0 by deleting the third max-pooling
layer L9. Then, we incorporate SBNN0 and SCNN0 by means
of a concatenation operation followed by a convolutional layer
M̂13 with its kernel size of one:

Ĝ13 = max(0,V13 ? [F8,G12] + b̂13). (9)

So far, we have provided the proposed dual-channel network
structure for feature extraction and feature fusion, as shown in
the left side of Fig. 3.

It still requires some layers for classification in our DCNN.
It is apparent that the fully-connected layers include much
more learnable parameters than the global average pooling
layer. Consequently, we append the global average pooling
layer M̂14 to the last convolutional layer M̂13 to compute two

2More discussions about these conclusions will be illustrated in the next
section.
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TABLE III: Illustration of network parameters of SBNN. In the leftmost column, L1 ∼ L12 are highlighted in red ink in Fig. 1.

Layer Type Network parameters

L1, L2 Convolution Filter size: 3×3 Filter number: 32 Stride: 1×1 Padding: Same Activation function: ReLU
L3 Pooling Pooling region size: 3×3 Stride: 2×2 Padding: Same Pooling method: Max-pooling

L4, L5 Normalization and convolution Filter size: 3×3 Filter number: 64 Stride: 1×1 Padding: Same Activation function: ReLU
L6 Pooling Pooling region size: 2×2 Stride: 2×2 Padding: Valid Pooling method: Max-pooling

L7, L8 Normalization and convolution Filter size: 3×3 Filter number: 384 Stride: 1×1 Padding: Same Activation function: ReLU
L9 Pooling Pooling region size: 2×2 Stride: 2×2 Padding: Valid Pooling method: Max-pooling

L10, L11 Full Connection Neurons number: 2048 Dropout : 0.5
L12 Output Neurons number: 2

TABLE IV: Illustration of network parameters of SCNN. In the leftmost column, M1 ∼ M14 are highlighted in red ink in Fig. 2.

Layer Type Network parameters

M1 Convolution Filter size: 9×9 Filter number: 32 Stride: 1×1 Padding: Same Activation function: ReLU
M2 Convolution Filter size: 1×1 Filter number: 64 Stride: 1×1 Padding: Same Activation function: ReLU

M3, M4, M5 Normalization and convolution Filter size: 3×3 Filter number: 64 Stride: 1×1 Padding: Same Activation function: ReLU
M6 Concatenation and convolution Filter size: 1×1 Filter number: 64 Stride: 1×1 Padding: Same Activation function: ReLU
M7 Pooling Pooling region size: 3×3 Stride: 2×2 Padding: Same Pooling method: Max-pooling

M8, M9 Normalization and convolution Filter size: 3×3 Filter number: 128 Stride: 1×1 Padding: Same Activation function: ReLU
M10 Pooling Pooling region size: 3×3 Stride: 2×2 Padding: Same Pooling method: Max-pooling

M11, M12 Normalization and convolution Filter size: 3×3 Filter number: 256 Stride: 1×1 Padding: Same Activation function: ReLU
M13 Convolution Filter size: 1×1 Filter number: 2 Stride: 1×1 Padding: Same Activation function: ReLU
M14 Pooling Pooling method: Global average pooling Activation function: Softmax

average numbers. Then, we use the softmax function to yield
two output probability values. The above processes can be
implemented by referring to Eqns. (7)-(8). Fig. 3 presents the
whole architecture of DCNN.

D. Network Training

During network training, first, we independently train each
of the dual channels, namely, SBNN and SCNN. For illustra-
tion, consider the training of SBNN. We take advantage of the
trial-and-error method to find the optimized network structure,
as tabulated in Table III. We then introduce the glorot uniform
method to initialize the network weights [35] and apply the
momentum and learning rate decay to advance the training
effect and prevent it from falling into the local optimum [36].
More specifically, the stochastic gradient descent is exploited
to train the SBNN by assigning the momentum coefficient
as 0.9, the initial learning rate as 0.01, and the learning rate
decay coefficient as 0.0001 [37]. Analogous to the majority of
classification tasks, one-hot encoding is deployed during the
training of SBNN with the loss function of cross entropy:

e(x, x̂) = −
2∑

k=1

xklog x̂k (10)

where x = [x1, x2]T represents the vector of the class label
and x̂ = [x̂1, x̂2]T represents the vector of the category
probability. The mini-batch size and the trained epoch are
set to be 96 and 300, respectively. In the above-mentioned
environment, we adjust the SBNN’s model parameters based
on the training set and determine the optimal model parameters
by making the network obtain the best accuracy on the
validation set. The same process is carried out to train the
SCNN by minimizing the loss function −

∑2
k=1 xklog ŷk. Its

optimized network structure is shown in Table IV.

Second, we incorporate the SBNN and SCNN to constitute
the whole DCNN, as exhibited in Fig. 3. We train the DCNN
by optimizing part of the network parameters (i.e., the convo-
lutional layer M̂13) and freezing the others (i.e., SBNN0 and
SCNN0)3. Third, we fine-tune the overall parameters of our
proposed DCNN to search for the optimal parameters. During
the above-mentioned two steps, we minimize the loss function
−
∑2

k=1 xklog ẑk.
To decrease the variance of image patches and improve

the network’s robustness, we further introduce two image
preprocessing methods, namely, patch normalization and data
augmentation. Normalization can effectively diminish the in-
fluence of brightness changes on smoke detection. This paper
uses the pixelwise min-max normalization method for image
patch normalization [38], which is calculated by the following:

dn =
dr − dmin

dmax − dmin
(11)

where dn is the normalization value of a pixel, dr means
the intensity value of a pixel, and dmin and dmax are the
minimum and maximum values of the pixels in the image
patch, respectively.

In the classification task, the relative balance of data be-
tween the categories has a significant improvement on the
performance of the algorithm [22]. For example, in the dataset
for training the network, there are approximately 2200 smoke
image patches and approximately 8500 smoke-free image
patches in total. By 90-degree, 180-degree and 270-degree
rotations, the number of smoke image patches is increased
to a similar number of the smoke-free image patches. Due
to the characteristics of smoke, these image patches can be
considered new smoke image patches acquired by rotation

3We transfer the well-trained network parameters in SBNN and SCNN to
SBNN0 and SCNN0 in the DCNN.
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TABLE V: Comparison with models based on hand-crafted features.

Methods HLTPMC [6] MCLBP [41] DCNN (Prop.)

Set1
AR 96.4% 96.9% 99.7%
DR 97.7% 97.6% 99.5%
FAR 4.57% 3.68% 0.12%

Set2
AR 98.4% 97.8% 99.4%
DR 98.5% 98.4% 99.0%
FAR 2.44% 2.86% 0.24%

TABLE VI: Comparison of the proposed DCNN with eight mainstream or state-of-the-art deep convolutional neural networks.

Networks Alex-Net ZF-Net VGG-Net GoogLe-Net Xception Res-Net Dense-Net DNCNN DCNN
[11] [12] [13] [14] [15] [16] [27] [22] Prop.

Set1
AR 95.6% 96.0% 96.8% 97.0% 97.9% 97.2% 98.6% 97.8% 99.7%
DR 94.9% 93.6% 95.2% 95.8% 96.7% 95.1% 98.3% 95.2% 99.5%
FAR 3.85% 2.41% 2.16% 2.17% 0.13% 1.44% 1.08% 0.48% 0.12%

Set2
AR 96.9% 97.6% 97.9% 98.1% 98.4% 98.1% 98.4% 98.0% 99.4%
DR 96.5% 97.9% 97.9% 97.2% 98.0% 97.4% 98.2% 96.3% 99.0%
FAR 2.69% 2.57% 2.08% 1.22% 1.10% 1.22% 1.10% 0.48% 0.24%

Number of parameters 60 million 60 million 120 million 7 million 20 million 60 million 7 million 20 million 2.7 million

operations. The smoke image patches generated by the above
data augmentation technology are associated with the different
flow directions of the smoke. For the convenience of readers,
Fig. 4 provides augmentation effects of several representative
smoke image patches.

III. EXPERIMENTAL RESULTS

This section will confirm the performance of our proposed
DCNN for detecting smoke and demonstrate its superiority
compared with state-of-the-art relevant competitors. This sec-
tion is composed of the experimental protocol, performance
comparison, implementation speed, feature map visualization,
discussion, and testing of real applications.

A. Experimental Protocol

TensorFlow [39] and Keras [40] are used in our experiment
for training the proposed DCNN for smoke detection. The
experimental environment is the Windows 10 operation system
running on a server with an Intel(R) Core i7-7820X CPU at
3.60 GHz and an NVIDIA GeForce GTX 1080.

In this test, we deploy the publicly available smoke detection
database [22], which is composed of four subsets, namely, Set-
1, Set-2, Set-3 and Set-4. Specifically, Set-1 (including 831
smoke-free image patches and 552 smoke image patches) and
Set-2 (including 817 smoke-free image patches and 688 smoke
image patches) are utilized for checking the detection perfor-
mance of the network. Set-3 consists of 8804 smoke image
patches, which is created by exerting the data augmentation on
the original 2201 smoke image patches, and 8511 smoke-free
image patches for training the network. Set-4 contains 9016
smoke image patches, which were produced by augmenting
the original 2254 smoke image patches, and 8363 smoke-free
image patches for validating the network. The leftmost column
in Fig. 4 presents four typical smoke image patches contained
in the smoke detection database.

For quantifying the performance of our proposed network
with others, we apply three typical evaluation indicators that
include accuracy rate (AR), detection rate (DR) and false alarm
rate (FAR), as defined by the following:

AR =
P1 +N2

T1 + T2
× 100% (12)

DR =
P1

T1
× 100% (13)

FAR =
N1

T2
× 100% (14)

where T1 and T2 are the numbers of positive samples and
negative samples, respectively; P1, N1 and N2 stand for the
number of correctly detected true positive samples, the number
of negative samples falsely classified as positive samples, and
the number of correctly detected true negative samples. A good
model is expected to achieve a high value in AR and DR but
a low value in FAR.

B. Performance Comparison

First, we examine the performance of the proposed DCNN
and tabulate its results in Table V. As seen, our DCNN has
achieved very high performance, even greater than 99.5% on
average. To verify the superiority of the DCNN, we compare
it with two popular models, HLTPMC [6] and MCLBP [41],
which were developed based on hand-crafted features followed
by the radial basis function (RBF) kernel-based SVM. Via
the grid search, the best SVM parameters can be obtained
by training on Set-3 (17315 patches) and validation on Set-4
(17379 patches). Specifically, we set both the penalty coeffi-
cient and gamma coefficient in the SVM as 1 for HLTPMC,
and set them as 798 and 102 for MCLBP respectively. Their
results are tabulated in Table V. It can be observed that our
DCNN has given rise to noticeably greater performance than
HLTPMC and MCLBP. More concretely, considering the AR
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TABLE VII: Comparison of DCNN with its two components and DNCNN.

Methods DNCNN [22] SBNN (Prop.) SCNN (Prop.) DCNN (Prop.)

Set1
AR 97.8% 98.3% 98.6% 99.7%
DR 95.2% 97.3% 97.6% 99.5%
FAR 0.48% 0.96% 0.84% 0.12%

Set2
AR 98.0% 98.7% 98.5% 99.4%
DR 96.3% 98.4% 97.2% 99.0%
FAR 0.48% 0.98% 0.48% 0.24%

(a) Training process (b) Validation process
Fig. 5: Plots of accuracy curves of Xception, Res-Net, Dense-Net and DCNN, during the training and validation processes.

(a) Training process (b) Validation process
Fig. 6: Plots of accuracy curves of DNCNN, SBNN, SCNN and DCNN during the training and validation processes.

as the evaluation indicator, the relative performance gains of
our proposed DCNN over the HLTPMC and MCLBP models
are, respectively, 3.4% and 2.9% on Set-1, as well as 1.0%
and 1.6% on Set-2 respectively.

Second, we compare the proposed DCNN with eight popular
or state-of-the-art deep neural networks, which include Alex-
Net [11], ZF-Net [12], VGG-Net [13], GoogLe-Net [14],
Xception [15], Res-Net (152 layers) [16], Dense-Net [27],
and DNCNN [22]. The performance indices of these eight
networks are illustrated in Table VI. We can easily find that
the DCNN has acquired the optimal performance. In view of
the AR index, the proposed DCNN has introduced a relative
performance gain of 1.9% on Set-1 and 1.4% on Set-2 in
comparison with the fourth-performing DNCNN, which is a
recently devised deep convolutional network specific to smoke
detection. In contrast to the third-place Xception, the relative
performance gains achieved by our DCNN are 1.8% on Set-1
and 1.0% on Set-2. The relative performance gains between
the DCNN and the second-rank Dense-Net are 1.1% on Set-1
and 1.0% on Set-2. We also compare the number of parameters

used in the network because it is also a significant indicator. To
achieve an excellent network, it is desirable that the network
contains fewer parameters and thus has strong generalization
ability. As listed in Table VI, our DCNN just involves 2.7
million parameters, less than one-third of the parameters
used in the state-of-the-art deep networks considered in this
paper. Furthermore, the standard deviations of the eight deep
networks tested and our DCNN across twenty iterations are
checked and compared. The standard deviations of Alex-Net,
ZF-Net, VGG-Net, GoogLe-Net, Xception, Res-Net, Dense-
Net, DNCNN and DCNN are respectively 0.2382, 0.1436,
0.1948, 0.0049, 0.0031, 0.0063, 0.0123, 0.1014 and 0.0020
on Set-1, and 0.2179, 0.1338, 0.1882, 0.0034, 0.0034, 0.0036,
0.0058, 0.0502 and 0.0012 on Set-2. From these results, we
can ascertain that the proposed DCNN has a considerably
stable performance, superior to the other competitors.

Third, the proposed DCNN is compared with its two com-
ponents, namely, SBNN and SCNN. We tabulate the results of
SBNN, SCNN and DCNN in Table VII. We also include the
recently developed DNCNN for comparison, since the SBNN
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TABLE VIII: Comparison of ablation analysis on each component of the proposed DCNN.

Networks DCNN1 DCNN2 DCNN3 DCNN4 DCNN5 DCNN6 DCNN

Set1
AR 97.3% 98.6% 98.4% 98.7% 98.7% 97.6% 99.7%
DR 96.0% 98.7% 96.9% 98.0% 98.0% 96.4% 99.5%
FAR 1.07% 1.44% 0.60% 0.84% 0.84% 1.56% 0.12%

Set2
AR 99.1% 99.3% 98.4% 98.7% 98.9% 98.5% 99.4%
DR 99.0% 99.0% 98.3% 97.5% 98.3% 98.3% 99.0%
FAR 0.85% 0.49% 1.29% 0.37% 0.49% 1.22% 0.24%

TABLE IX: Implementation speed comparison of our proposed DCNN with eight deep convolutional neural networks.

Networks Alex-Net ZF-Net VGG-Net GoogLe-Net Xception Res-Net Dense-Net DNCNN DCNN
[11] [12] [13] [14] [15] [16] [27] [22] Prop.

Speed (millisecond/patch) 0.366 1.027 0.384 0.701 0.610 1.523 1.131 0.369 0.453

is inspired by the DNCNN. It can be readily found that our
SBNN is superior to the DNCNN, which might be attributed to
the introduction of selectively appending the BN layer after the
convolutional layer. In addition, SCNN performs better than
SBNN, which is possibly due to the use of the skip connection
for preventing the vanishing gradient and enhancing the feature
propagation as well as the global average pooling for decreas-
ing the number of parameters and mitigating the problem of
over-fitting. Last, we can find that the proposed DCNN is
better than SCNN. This might be due to the appropriate fusion
of SBNN and SCNN to complement each other, since they are
good at extracting detail information and base information of
smoke, respectively. In Section III-D, we will discuss in detail
the complementarity of these two networks in capturing the
characteristics of smoke.

Fourth, we visualize the curves of training accuracy and
validation accuracy to further compare the whole training
process of the state-of-the-art Xception, Res-Net, Dense-Net
and DNCNN, as well as the proposed SBNN, SCNN and
DCNN. For clarity, we divide the above seven networks into
two groups. One group is composed of Xception, Res-Net,
Dense-Net and DCNN, as shown in Figs. 5(a)-(b), and the
other group is composed of DNCNN, SBNN, SCNN and
DCNN, as shown in Figs. 6(a)-(b). Let us first consider Fig. 5.
From (a), it can be viewed that in comparison with Xception,
Res-Net and Dense-Net, the proposed DCNN converges more
quickly, and its training accuracy values can approach one
as the epoch increases to surpass 30. From (b), we can
see that the validation accuracy values are quite different
among the four testing networks. According to the accuracy
values, we are able to derive the following rank: DCNN >
Dense-Net > Xception > Res-Net. Moreover, it can be found
that the validation accuracy values of Xception and Res-Net
are quite oscillatory, which is possibly because they have
a deeper structure and a small change in model parameters
may largely affect the validation accuracy. We then observe
Fig. 6. Two important observations can be established: 1) the
convergence speed of DCNN is remarkably faster than its
two components (namely, SBNN and SCNN) and the recently
proposed DNCNN during network training; and 2) DCNN
has superior and stable accuracy values compared with the

other three networks tested during the validation process. In
summary, the introduction of fusing SBNN and SCNN for
feature extraction can contribute substantially to our DCNN.

Fifth, we conduct the ablation analysis on each component
of the proposed DCNN. We remove all the BN layers from
DCNN and call such a network DCNN1. Note that in SBNN0

and SCNN0, several convolution layers exist that the BN layers
are not appended to. Therefore, we add the BN layers after
L1 and L2 in SBNN0 and M1 and M2 in SCNN0. Such a
modified network is named DCNN2. Further, we separately
eliminate the skip connection in SCNN0, the momentum, as
well as the learning rate decay, and dub those three networks as
DCNN3, DCNN4 and DCNN5. Finally, we replace the global
average pooling layer with the typically used fully-connected
layers. In particular, L10, L11 and L12 in SBNN are used to
replace M̂14 in our proposed DCNN. This modified network
is called DCNN6. We train the DCNN1, DCNN2, DCNN3,
DCNN4, DCNN5 and DCNN6 based on the same method
applied in DCNN and tabulate their detection performances in
Table VIII. According to the results, two dominant conclusions
can be drawn. First, by introducing the selective-based BN,
skip connection, momentum, learning rate decay, and global
average pooling, our proposed DCNN has attained the best
classification performance. Second, in contrast to the others,
DCNN1 and DCNN6 have low testing accuracy values, and
this implies that BN and global average pooling have provided
greater contributions to the DCNN.

Sixth, we carry out the comparison with other fusion strate-
gies of SBNN and SCNN. Since the task of smoke detection
in this work is a binary classification problem, the direct
fusions of decisions of SBNN and SCNN are their union and
intersection, namely, ‘SBNN ∪ SCNN’ and ‘SBNN ∩ SCNN’.
The AR, DR and FAR results of their union are 98.3%, 96.0%
and 0.24% on Set-1, and 98.4%, 97.1% and 0.48% on Set-2
respectively. The AR, DR and FAR results of their intersection
are 98.6%, 98.9% and 1.58% on Set-1, and 98.8%, 98.6% and
0.98% on Set-2 respectively. Clearly, the fusion of decisions
of SBNN and SCNN is appreciably inferior to the proposed
DCNN, which combines SBNN and SCNN in terms of feature
fusion.
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Fig. 7: Illustration of typical intermediate feature maps extracted using SBNN0 and SCNN0 prior to two pooling layers.

C. Implementation Speed
Implementation efficiency is also a significant indicator. As

illustrated in Table IX, we compare the implementation time
of our proposed DCNN and the eight deep networks tested.
Specifically, we run each network on all 2888 testing RGB
image patches of size 48×48×3 (1383 patches from Set-1 and
1505 patches from Set-2) and then compute the average time
for each image patch. In this test, a computer was configured
with a CPU processor of 2.1 GHz, an NVIDIA TITAN Xp
GPU of 43.9 GB, and 64.0 GB of RAM. One can easily
find that the proposed DCNN only consumes less than 0.5
millisecond for each patch, obviously faster than the state-of-
the-art Res-Net and Dense-Net.

D. Feature Map Visualization
We further discuss the necessity of fusing the feature

maps extracted by using SBNN0 and SCNN0 to complement
each other. More specifically, we exhibit in Fig. 7 a sample
image patch and its associated visualized intermediate feature
maps extracted from SBNN0 and SCNN0. The visualized
feature maps before each pooling operation are considered as
examples. First, let us observe the feature maps prior to the
first pooling operation. A large gap of feature maps between
SBNN0 and SCNN0 can be found. Then, we compare the
feature maps of SBNN0 and SCNN0 before the second pooling
operation. We can also find a much larger distance exists
between the feature maps of the two subnetworks. Obviously,
the SBNN0 and SCNN0 are quite different.

Furthermore, we leverage the popular guided image filter
(GIF) [42] to decompose the sample smoke image patch into

Fig. 8: Falsely detected samples from Set-1 and Set-2.

a base map and a detail map, as shown in Fig. 7. Such an
operation has been widely applied in numerous multimedia
applications [43]-[45]. As shown, the base map contains the
large-scale variations in intensity, whereas the detail map
contains the small-scale details. Comparing the base and detail
maps with the feature maps mentioned above, we can find that
the feature maps of SBNN0 are similar to the detail map,
while the feature maps of SCNN0 are similar to the base
map. That is, the SBNN0 is mainly devoted to extracting the
detailed features from smoke image patches and the SCNN0

mostly focuses on extracting the basic features. The SBNN0

and SCNN0 can nicely complement each other and effectively
boost the DCNN’s performance.

E. Discussion

Analysing the falsely detected samples is a considerably
beneficial insight for improving the performance of our pro-
posed network. Thus, we take into account four typical sam-
ples wherein the proposed DCNN fails, as shown in Fig. 8. It is
not difficult to observe that our DCNN is not good at detecting
smoke that has fewer textures, just as the samples show in Fig.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9: Typical flame images in petrochemical enterprises.

8. To address such a difficulty, our future work will consider
enhancing image textures prior to detection. In addition, it is
worthwhile to emphasize that the proposed DCNN systemat-
ically integrates contour information and texture information,
both of which are very important for smoke detection. In
contrast, the well-known deep networks, such as Res-Net and
Dense-Net, were developed specifically for image recognition
tasks, in which the semantic information (e.g., contour) plays
the most crucial function. In summary, our DCNN is proposed
particularly for extracting smoke characteristics and detecting
smoke and is thereby superior to these famous deep networks
that we have tested.

F. Testing of Real Applications

In this section, we will examine the proposed DCNN in
two important real applications. The first application is to
detect whether there is smoke emitted from a flare that burns
waste gas produced by petrochemical enterprises, where such
flares are employed to maintain safety and prevent harm to
the environment. Importantly, black smoke will be generated
from the flare if the exhaust gas is not sufficiently burned. In
such a case, some water vapour should be sent to the flame for
smoke abatement. However, determining how to automatically
adjust the volume of water vapour is a significant problem.
The proposed DCNN can be used to solve this problem by
detecting black smoke from the camera image, which is then
followed by controlling the volume of water vapour. In Fig. 9,
we display some typical intermediate flame images. The image
number and its associated result of our proposed DCNN are
as follows: (a) smoke-free, (b) smoke, (c) smoke, (d) smoke,
(e) smoke, (f) smoke, (g) smoke-free, (h) smoke-free, and (i)
smoke-free, which are the same as the real results.

The second application is to apply camera images to detect
cigarette smoke, as shown in Fig. 10. Ten thousand RGB
image patches of size 48×48×3 are randomly selected from
these two camera images, and then labelled by five graduate
students. According to the label results, we preserved 8919
image patches, each of which has the exact same label results

(a) (b)

Fig. 10: Two camera images of cigarette smoke detection.

TABLE X: Comparison on cigarette smoke detection.

AR Xception Dense-Net DNCNN DCNN

Fig. 10(a) 72.4% 78.5% 57.5% 80.6%
Fig. 10(b) 65.4% 75.8% 59.1% 79.3%

Overall 68.6% 77.1% 58.3% 79.8%

provided by all five graduate students. The detection accuracy
values of our DCNN and state-of-the-art Xception, Dense-Net
and DNCNN are tabulated in Table X. We are able to derive
two crucial conclusions: 1) the proposed DCNN is slightly
superior to Dense-Net and obviously better than Xception and
DNCNN; and 2) all the deep networks are not greatly adept
in detecting cigarette smoke from the camera images.

In the future, we plan to focus on detecting black smoke
from flame images and light smoke from cigarette images.
Specifically, we will first build two large-size image datasets
for black smoke detection and cigarette smoke detection. Sec-
ond, we will design specific deep neural networks that consider
the characteristics of black smoke and cigarette smoke for
detection.

IV. CONCLUSIONS

In this paper, we have investigated the problem of image-
based smoke detection by devising a novel deep dual-channel
neural network dubbed DCNN. In contrast to the recent-
ly proposed deep neural networks, including Alex-Net, ZF-
Net, VGG-Net, GoogLe-Net, Xception, Res-Net, Dense-Net,
and the smoke-specific DNCNN, the proposed DCNN is
established mainly based on the fusion of two channels of
deep subnetworks. The first channel’s subnetwork is built
by first connecting multiple convolutional layers and max-
pooling layers sequentially, and then appending the BN layer
to part of the last convolutional layers selectively. The second
channel’s subnetwork is constructed by incorporating the skip
connection and global average pooling with the convolutional,
BN, and max-pooling layers. The skip connection can help to
prevent the vanishing gradient and enhance the feature propa-
gation. The global average pooling is beneficial in decreasing
the number of network parameters and mitigating the problem
of over-fitting. The proposed DCNN is finally designed to
combine the aforementioned two deep subnetworks by a con-
catenation operation. We implement comparative experiments
on the publicly available smoke detection image database to
confirm the effectiveness of our deep network.

Compared with the recently developed smoke detection
models and state-of-the-art deep neural networks, our DCNN
has achieved optimal performance, beyond 99.5% on average,
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with the least network parameters. Furthermore, through a
numerical comparison and a visualized comparison, we il-
lustrate that the superiority of the proposed deep network
is primarily achievable because the dual deep subnetworks
mentioned above can complement each other.

REFERENCES
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